MatPlotLib
Graphics
import matplotlib.pyplot as plt- setup graph area: 
fig, ax = subplots(figsize=(w,h))- resize figure: 
fig.set_size_inches(w,h) - multiple plots: 
fig, axes = subplots(nrows=2,ncols=3,figsize=(15,5))- affect individual plot: 
axes[r,c].plot(x,y) 
 - affect individual plot: 
 
 - resize figure: 
 - plot: 
ax.plot(x,y);- line plot is default
 - scatterplot: 
ax.plot(x, y, 'o');orax.scatter(x, y, marker='o'); - labels (methods) : 
ax.set_xlabel(), ax.set_ylabel(), ax.set_title() 
 - save: 
fig.savefig("Figure.png", dpi=400) - 3-dimensional data
- contour map: 
ax.contour(x,y,z) - heatmap: 
ax.imshow() 
 - contour map: 
 
Additional Graphical and Numerical Summaries
- plot values in df columns: 
ax.plot(df['col1'], df['col2'], 'o'); - use 
df.plot()to call the variables by name and auto populate axes- i.e. 
ax = Auto.plot.scatter('horsepower', 'mpg') - multiple plots in one chart: 
Auto.plot.scatter('horsepower', 'mpg', ax=axes[1]); 
 - i.e. 
 - update column type: 
pd.Series()- i.e. 
Auto.cylinders = pd.Series(Auto.cylinders, dtype='category') 
 - i.e. 
 - boxplot: 
df.boxplot() - histogram: 
df.hist() - scatterplot matrix: 
pd.plotting.scatter_matrix(df,figsize=(16,16)); - numerical summary: 
df.describe()ordf[col].describe()
residual scatter plot: 
ax = subplots(figsize=(8,8))[1]
ax.scatter(results.fittedvalues, results.resid)
ax.set_xlabel('Fitted value')
ax.set_ylabel('Residual')
ax.axhline(0, c='k', ls='--');
leverage scatter plot:
infl = results.get_influence()
ax = subplots(figsize=(8,8))[1]
ax.scatter(np.arange(X.shape[0]), infl.hat_matrix_diag)
ax.set_xlabel('Index')
ax.set_ylabel('Leverage')
you can plot a single variable super fast with df.plot(y='col')