Discrete Probability Distributions

Discrete Probability Distribution

a type of probability distribution that shows all possible values of a discrete random variable along with the associated probabilities
Example:
probability distribution example.png|center

Expectation

E(X)=∑xP(X=x)

Variance

Var(X)=E(X−μ)2E(X−μ)2=∑(x−μ)2P(X=x)

Standard Deviation

σ=Var(X)

Independent Observation

E(X1+X2+...Xn)=nE(X)Var(X1+X2+...Xn)=nVar(X)

If you have independent variables X and Y then:

E(X+Y)=E(X)+E(Y)E(X−Y)=E(X)−E(Y)Var(X+Y)=Var(X)+Var(Y)Var(X−Y)=Var(X)+Var(Y)

Linear Transforms

If you have a variable X and numbers a and b then:

E(aX+b)=aE(X)+bVar(aX+b)=a2Var(X)

If you have a variable X and variable Y and numbers a and b then:

E(aX+bY)=aE(X)+bE(Y)E(aX−bY)=aE(X)−bE(Y)Var(aX+bY)=a2Var(X)+b2Var(Y)Var(aX−bY)=a2Var(X)+b2Var(Y)

Sources: 1

Connect With Me!